The relationship between variables in wearable microtechnology devices and cricket fast-bowling intensity

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
McNamara, Dean J
Gabbett, Tim J
Blanch, Peter
Kelly, Luke
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

To date, the monitoring of fast-bowling workloads across training and competition environments has been limited to counting total balls bowled. However, bowling at faster velocities is likely to require greater effort while also placing greater load on the bowler. This study investigated the relationship between prescribed effort and microtechnology outputs in fast bowlers to ascertain whether the technology could provide a more refined measure of workload. Twelve high-performing fast bowlers (mean ± SD age 20.3 ± 2.2 y) participated in the study. Each bowler bowled 6 balls at prescribed bowling intensities of 60%, 70%, 85%, and 100%. The relationships between microtechnology outputs, prescribed intensity, and ball velocity were determined using polynomial regression. Very large relationships were observed between prescribed effort and ball velocity for peak PlayerLoad™ (R = .83 ± .19 and .82 ± .20). The PlayerLoad across lower ranges of prescribed effort exhibited a higher coefficient of variation (CV) (60% = 19.0% [17.0–23.0%]), while the CV at higher ranges of prescribed effort was lower (100% = 7.3% [6.4–8.5%]). Routinely used wearable microtechnology devices offer opportunities to examine workload and intensity in cricket fast bowlers outside the normal metrics reported. They offer a useful tool for prescribing and monitoring bowling intensity and workload in elite fast bowlers.

Journal Title

International Journal of Sports Physiology and Performance

Conference Title
Book Title
Edition
Volume

13

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 Human Kinetics. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Sports science and exercise

Sports science and exercise not elsewhere classified

Medical physiology

Psychology

Clinical sciences

Persistent link to this record
Citation
Collections