Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel
File version
Author(s)
Yan, Sheng
Sluyter, Ronald
Li, Weihua
Alici, Gursel
Nam-Trung, Nguyen
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
3530307 bytes
File type(s)
application/pdf
Location
Abstract
This paper presents an inertial microfluidic device with a simple serpentine micro-channel to continuously separate particles with high performance. Separation of micro/nano-particles has a variety of potential applications in biomedicine and industry. Among the existing separation technologies, a label-free technique without the use of antibody affinity, filter or centrifugation is highly desired to ensure minimal damage and alteration to the cells. Inertial microfluidics utilising hydrodynamic forces to separate particles is one of the most suitable label-free technologies with a high throughput. Our separation concept relies on size-based differential equilibrium positions of the particles perpendicular to the flow. Highly efficient separation is demonstrated with particles of different sizes. The results indicate that the proposed device has an integrative advantage to the existing microfluidic separation techniques, taking accounts of purity, efficiency, parallelizability, footprint, throughput and resolution. Our device is expected to be a good alternative to conventional separation methods for sample preparation and clinical diagnosis.
Journal Title
Scientific Reports
Conference Title
Book Title
Edition
Volume
4
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. You may not alter, transform, or build upon this work.
Item Access Status
Note
Access the data
Related item(s)
Subject
Biomedical instrumentation