Evolutionary transitions between mechanisms of sex determination in vertebrates

No Thumbnail Available
File version
Author(s)
Quinn, Alexander E
Sarre, Stephen D
Ezaz, Tariq
Graves, Jennifer A Marshall
Georges, Arthur
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2011
Size
File type(s)
Location
License
Abstract

Sex in many organisms is a dichotomous phenotype—individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW–XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.

Journal Title

Biology letters

Conference Title
Book Title
Edition
Volume

7

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Biological sciences

Evolutionary biology not elsewhere classified

Persistent link to this record
Citation
Collections