Optical alignment of a cylindrical object
File version
Author(s)
Nguyen, Nam-Trung
Asundi, Anand Krishna
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
416952 bytes
File type(s)
application/pdf
Location
License
Abstract
This paper reports the use of theory of geometrical optics to analyze how an optical field interacts with a cylindrical object. Of great interest is the mechanism with which a laser beam with a special profile manipulates a particle which has a similar shape as the beam profile. The present paper investigates the interaction between a cylinder-shape fiber and a laser beam with a line-shape profile. Based on the Fresnel equation, a numerical model was formulated to describe the optical torque generated by a projected line-shape optical image. The drag force was also considered in the model to accurately describe the fiber's movement in a liquid. A differential equation is established to describe this damped movement of the cylinder. Parametric analysis was carried out to investigate the influence of the beam power and the liquid viscosity as well as the density, the length, and the diameter of the cylindrical object. The movement of a carbon fiber was measured with a CCD camera. The observed experimental results agree well with the theoretical results.
Journal Title
Journal of Optics A: Pure and Applied Optics
Conference Title
Book Title
Edition
Volume
11
Issue
3
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2009 Institute of Physics Publishing. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Atomic, molecular and optical physics
Quantum physics
Engineering practice and education not elsewhere classified