Hydrodynamic Response Analysis of Combined Spar Wind Turbine and Fish Cage for Offshore Fish Farms

Thumbnail Image
File version

Accepted Manuscript (AM)

Chu, YI
Wang, CM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
File type(s)

This paper is concerned with the hydrodynamic response of a novel offshore fish farm that combines a floating spar wind turbine and a fish cage (named as COSPAR for brevity). The open net steel cage is octagonal in shape with a partially porous wave fence at its top end to attenuate wave energy for a calm fish farming environment as well as to keep predators out. The deep draught spar is made from concrete for its bottom half and from steel for its top half. The spar carries a control unit and a 1MW wind turbine that provides the required power to operate the offshore salmon fish farm. The COSPAR fish cage has four catenary chains as mooring lines attached to mid length of the spar (outside the fish cage) so as to mitigate tension force in the mooring lines and to reduce the benthic footprint. ANSYS Design Modeler and Aqwa are used to perform the hydrodynamic response analysis of free-floating condition of COSPAR in the frequency domain and coupled analysis involving COSPAR and the mooring lines in the frequency domain and time domain. Environmental conditions, representing 5-year, 20-year and 50-year wave return periods with a constant current flow at an exposed fish farming site in Storm Bay of Tasmania, Australia, are adopted for the analyses. A comparison study is made against having a floating fish cage only (i.e. without the bottom half concrete of the spar) with four catenary chains attached to side vertical columns of the cage so that the fish cage behaves like a semi-submersible cage. Based on the comparison study, the COSPAR fish cage shows enhanced hydrodynamic responses in the following respects: (1) more stable motion responses in heave and pitch against wave and current forces, (2) less susceptible to the viscous damping when it is assumed by a linearized drag force of Morison elements in the frequency domain and (3) reduction of tension forces in the mooring lines. Interestingly, the pitch motion response of COSPAR fish cage in the frequency domain is in close agreement with the time domain result due to its greater pitching stiffness that reduces nonlinear effects from viscous drag and mooring interaction.

Journal Title

International Journal of Structural Stability and Dynamics

Conference Title
Book Title




Thesis Type
Degree Program
Publisher link
Patent number
Grant identifier(s)
Rights Statement
Rights Statement

Electronic version of an article published in International Journal of Structural Stability and Dynamics, 20 (9), pp. 2050104, https://doi.org/10.1142/S0219455420501047 Copyright World Scientific Publishing Company http://www.worldscinet.com/ijssd/

Item Access Status
Access the data
Related item(s)


Persistent link to this record

Chu, YI; Wang, CM, Hydrodynamic Response Analysis of Combined Spar Wind Turbine and Fish Cage for Offshore Fish Farms, International Journal of Structural Stability and Dynamics, 2020, 20 (9), pp. 2050104