Shell carbon isotope indicators of metabolic activity in the deep-sea mussel Bathymodiolus childressi
File version
Accepted Manuscript (AM)
Author(s)
Carney, R
Fry, Brian
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The incorporation of metabolic carbon (Cm) into shells of mollusks has been used as an indicator of animal condition and availability of food resources in estuarine and freshwater settings. This study examines Cm in Bathymodiolus childressi, a marine cold seep mussel dependent on methanotrophic symbionts. As seeps develop, mature, and go quiescent, methane supply will vary and affect the amount of metabolic carbon deposited into the growing shell. B. childressi (n = 136) were live-collected from two seep sites over a 17 year period in the Northern Gulf of Mexico to investigate whether changes in Cm were detectable between sites and across years. Significant differences in Cm were observed between mussel populations at Brine Pool (15.4 ± 0.4%) and Bush Hill (10.3 ± 0.3%). Cm also changed significantly within each site across year (Bush Hill 1991: 12.2 ± 0.5%, 1992: 17.3 ± 0.8%) and decadal time scales (Brine Pool 1989: 15.5 ± 0.7%, 2006: 19.5 ± 0.7%). These findings agree with previous studies that found mussel condition was higher at Brine Pool and correlate well with a trophic mixing model that indicated significantly higher methane source utilization at the Brine Pool (65 ± 1.1%) than at Bush Hill (49 ± 1.6%). Further development of this method should allow for assessment of Cm in shell assemblages as an indicator of historical resource availability at both active and former cold seep sites.
Journal Title
Deep Sea Research Part I: Oceanographic Research Papers
Conference Title
Book Title
Edition
Volume
134
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Geochemistry
Geochemistry not elsewhere classified
Geology
Oceanography