A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Adelskov, Joseph
Patel, Bharat KC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
Abstract

A thermophilic, heterotrophic and facultatively anaerobic bacterium designated strain D7XPN1 was isolated from Baku BakuKing™, a commercial food-waste degrading bioreactor (composter). The strain grew optimally at 45 °C (growth range between 24 and 50 °C) and pH 7 (growth pH range between pH 5 and 9) in Luria Broth supplemented with 0.3 % glucose. Strain D7XPN1 tolerated up to 7 % NaCl and showed amylolytic and xylanolytic activities. 16S rRNA gene analysis placed strain D7XPN1 in the cluster represented by Bacillus subtilis and the genome analysis of the 4.1 Mb genome sequence determined using RAST (Rapid Annotation using Subsystem Technology) indicated a total of 5116 genomic features were present of which 2320 features could be grouped into several subsystem categories. Of these, 615 features were related to carbohydrate metabolism which included a range of enzymes with potential in the biodegradation of food wastes, a property consistent with the ecological habitat of the isolate. ANIb (Average Nucleotide Identity based on BLAST) analysis with 49 Bacillus subtilis genomes indicated that it was distantly related to the three currently taxonomically validated B. subtilis subspecies namely B. subtilis subsp. subtilis (95.6 %), B. subtilis subsp. spizizenii (93 %) and B. subtilis subsp. inaquosorum (92 %) and based on our current knowledge warranted that it be included as a separate cluster together with strain JS which it was closely related (98.69 %). The close relationship of strains D7XPN1 and JS is also supported from our results from electronic DNA–DNA Hybridization (e-DDH) studies. Furthermore, our additional in-depth phylogenomic analyses using three different datasets unequivocally supported the creation of a fourth B. subtilis subspecies to include strains D7XPN1 and JS for which we propose strain D7XPN1T (=KCTC 33554T, JCM 30051T) as the type strain, and designate it as B. subtilis subsp. stecoris.

Journal Title

3 Biotech

Conference Title
Book Title
Edition
Volume

6

Issue

96

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biochemistry and cell biology

Microbial genetics

Persistent link to this record
Citation
Collections