Erosion–Seepage System (ESS) for Flow-Induced Soil Erosion Rate with Seepage
File version
Version of Record (VoR)
Author(s)
Cui, Lin
Jeng, Dong-Sheng
Wang, Zheng
Zhai, Hualing
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Critical shear stress and erosion rate are two key factors for the prediction of the incipient motion of sediment and the transport of sediment. Seabed seepage can significantly alter the pore pressure gradient within the soil and the hydrodynamics around the surface of the seabed, further affecting erosion processes. Previous studies attempted to theoretically clarify the effect of the seepage force on sediment incipient motion. In this study, a newly designed erosion–seepage system (ESS) that considers the effect of seepage under steady or oscillatory flow is used to simulate the erosion process. Through the designed ESS, the erosion height per unit time was measured directly on the Yellow River sand, and the upward seepage force was applied at the bottom of the soil sample in the process. Then, the relationship between the erosion rate and seepage was established.The experimental results show that upward seepage reduces the critical shear stress of the sand bed and increases the erosion rate of the soils under both steady flow and oscillatory flow conditions. The erosion coefficients in the erosion models decrease with increasing seepage gradient. The effect of seepage on erosion is more obvious when the flow velocity of the steady stream is large, while the effect of seepage on erosion is relatively small under the oscillatory state with a shorter period. However, when violent erosion of soil samples occurs, seepage under both flow conditions greatly increases the erosion rate.
Journal Title
Journal of Marine Science and Engineering
Conference Title
Book Title
Edition
Volume
13
Issue
1
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation
Zhang, Y; Cui, L; Jeng, D-S; Wang, Z; Zhai, H, Erosion–Seepage System (ESS) for Flow-Induced Soil Erosion Rate with Seepage, Journal of Marine Science and Engineering, 2025, 13 (1), pp. 152