Molecular surveillance of true nontypeable haemophilus influenzae: An evaluation of pcr screening assays

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Binks, Michael J
Temple, Beth
Kirkham, Lea-Ann
Wiertsema, Selma P
Dunne, Eileen M
Richmond, Peter C
Marsh, Robyn L
Leach, Amanda J
Smith-Vaughan, Heidi C
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size
File type(s)
Location
Abstract

Background: Unambiguous identification of nontypeable Haemophilus influenzae (NTHi) is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh); however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination. Methodology/Principal Findings: Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22), Hh (n = 27) or equivocal (n = 11), were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCRbased assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3) and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction. Conclusions/Significance: Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.

Journal Title

PLoS One

Conference Title
Book Title
Edition
Volume

7

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2012 Binks et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Microbiology not elsewhere classified

Persistent link to this record
Citation
Collections