Granum-like stacking structures with TiO2-graphene nanosheets for improving photo-electric conversion
File version
Author(s)
Zhang, Yu
Halpert, Jonathan E.
Zhai, Jin
Wang, Dan
Jiang, Lei
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Solar energy is commonly considered to be one of the most important forms of future energy production. This is due to its ability to generate essentially free power, after installation, with low environmental impact. Green plants, meanwhile, exhibit a process for light‐to‐charge conversion that provides a useful model for using solar radiation efficiently. Granum, the core organ in photosynthesis consists of a stack of ~10–100 thylakoids containing pigments and electrons acceptors. Imitating the structure and function of granum, stacked structures are fabricated with TiO2/graphene nanosheets as the thylakoids unit, and their photo‐electric effect is studied by varying the number of layers present in the film. The photo‐electric response of the graphene composites are found to be 20 times higher than that of pure TiO2 in films with 25 units stacked. Importantly, the cathodic photocurrent changes to anodic photocurrent as the thickness increases, an important feature of efficient solar cells which is often ignored. Here graphene is proposed to perform similarly to the b6f complex in granum, by separating charges and transporting electrons through the stacked film. Using this innovation, stacked TiO2/graphene structures are now able to significantly increase photoanode thickness in solar cells without losing the ability to conduct electrons.
Journal Title
Small
Conference Title
Book Title
Edition
Volume
8
Issue
11
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Macromolecular and Materials Chemistry not elsewhere classified