Prediction of Achilles Tendon Force During Common Motor Tasks From Markerless Video
File version
Accepted Manuscript (AM)
Author(s)
Cornish, Bradley M
Devaprakash, Daniel
Barrett, Rod S
Lloyd, David G
Hams, Andrea H
Pizzolato, Claudio
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Remodeling of the Achilles tendon (AT) is partly driven by its mechanical environment. AT force can be estimated with neuromusculoskeletal (NMSK) modeling; however, the complex experimental setup required to perform the analyses confines use to the laboratory. We developed task-specific long short-term memory (LSTM) neural networks that employ markerless video data to predict the AT force during walking, running, countermovement jump, single-leg landing, and single-leg heel rise. The task-specific LSTM models were trained on pose estimation keypoints and corresponding AT force data from 16 subjects, calculated via an established NMSK modeling pipeline, and cross-validated using a leave-one-subject-out approach. As proof-of-concept, new motion data of one participant was collected with two smartphones and used to predict AT forces. The task-specific LSTM models predicted the time-series AT force using synthesized pose estimation data with root mean square error (RMSE) ≤ 526 N, normalized RMSE (nRMSE) ≤ 0.21, R 2 ≥ 0.81. Walking task resulted the most accurate with RMSE = 189±62 N; nRMSE = 0.11±0.03, R 2 = 0.92±0.04. AT force predicted with smartphones video data was physiologically plausible, agreeing in timing and magnitude with established force profiles. This study demonstrated the feasibility of using low-cost solutions to deploy complex biomechanical analyses outside the laboratory.
Journal Title
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advance online version.
Access the data
Related item(s)
Subject
Biomedical engineering
Control engineering, mechatronics and robotics
Persistent link to this record
Citation
Xia, Z; Cornish, BM; Devaprakash, D; Barrett, RS; Lloyd, DG; Hams, AH; Pizzolato, C, Prediction of Achilles Tendon Force During Common Motor Tasks From Markerless Video, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024