Compartmental modeling of skin absorption and desorption kinetics: Donor solvent evaporation, variable diffusion/partition coefficients, and slow equilibration process within stratum corneum

No Thumbnail Available
File version
Author(s)
Amarah, AA
Hadgraft, J
Roberts, MS
Anissimov, YG
Primary Supervisor
Other Supervisors
Editor(s)
Date
2022
Size
File type(s)
Location
License
Abstract

This work expands the recently developed compartmental model for skin transport to model variable diffusion and/or partition coefficients, and the presence of slow equilibration/slow binding kinetics within stratum corneum. The model was validated by comparing it with the diffusion model which was solved numerically using the finite element method. It was found that the new compartmental model predictions agreed well with that of the diffusion model, providing a sufficient number of compartments was used. The compartmental model was applied to two previously published experimental data sets: water penetration and desorption data and the finite dose dermal penetration of testosterone. Significant improvement of the fitting quality for all these data sets was achieved using the compartmental model.

Journal Title

International Journal of Pharmaceutics

Conference Title
Book Title
Edition
Volume

623

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Pharmacology and pharmaceutical sciences

Science & Technology

Life Sciences & Biomedicine

Pharmacology & Pharmacy

Skin transport

Compartmental model

Persistent link to this record
Citation

Amarah, AA; Hadgraft, J; Roberts, MS; Anissimov, YG, Compartmental modeling of skin absorption and desorption kinetics: Donor solvent evaporation, variable diffusion/partition coefficients, and slow equilibration process within stratum corneum, International Journal of Pharmaceutics, 2022, 623, pp. 121902

Collections