Multiple-copy state discrimination: Thinking globally, acting locally

Loading...
Thumbnail Image
File version
Author(s)
Higgins, BL
Doherty, AC
Bartlett, SD
Pryde, GJ
Wiseman, HM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2011
Size

567482 bytes

File type(s)

application/pdf

Location
License
Abstract

We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N?8. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.

Journal Title

Physical Review A

Conference Title
Book Title
Edition
Volume

83

Issue

5

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2011 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Physical sciences

Quantum information, computation and communication

Quantum optics and quantum optomechanics

Chemical sciences

Persistent link to this record
Citation
Collections