Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems

No Thumbnail Available
File version
Author(s)
Tan, Angel
Simovic, Spomenka
Davey, Andrew K
Rades, Thomas
Boyd, Ben J
Prestidge, Clive A
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2010
Size
File type(s)
Location
License
Abstract

We investigate the role of hydrophilic fumed silica in controlling the digestion kinetics of lipid emulsions, hence further exploring the mechanisms behind the improved oral absorption of poorly soluble drugs promoted by silica-lipid hybrid (SLH) microcapsules. An in vitro lipolysis model was used to quantify the lipase-mediated digestion kinetics of a series of lipid vehicles formulated with caprylic/capric triglycerides: lipid solution, submicrometer lipid emulsions (in the presence and absence of silica), and SLH microcapsules. The importance of emulsification on lipid digestibility is evidenced by the significantly higher initial digestion rate constants for SLH microcapsules and lipid emulsions (>15-fold) in comparison with that of the lipid solution. Silica particles exerted an inhibitory effect on the digestion of submicrometer lipid emulsions regardless of their initial location, i.e., aqueous or lipid phases. This inhibitory effect, however, was not observed for SLH microcapsules. This highlights the importance of the matrix structure and porosity of the hybrid microcapsule system in enhancing lipid digestibility as compared to submicrometer lipid emulsions stabilized by silica. For each studied formulation, the digestion kinetics is well correlated to the corresponding in vivo plasma concentrations of a model drug, celecoxib, via multiple-point correlations (R2 > 0.97). This supports the use of the lipid digestion model for predicting the in vivo outcome of an orally dosed lipid formulation. SLH microcapsules offer the potential to enhance the oral absorption of poorly soluble drugs via increased lipid digestibility in conjunction with improved drug dissolution/dispersion.

Journal Title

Molecular Pharmaceutics

Conference Title
Book Title
Edition
Volume

7

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.

Item Access Status
Note
Access the data
Related item(s)
Subject

Macromolecular and materials chemistry

Pharmacology and pharmaceutical sciences

Pharmaceutical sciences

Persistent link to this record
Citation
Collections