Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Mafarja, Majdi
Aljarah, Ibrahim
Heidari, Ali Asghar
Hammouri, Abdelaziz I
Faris, Hossam
Al-Zoubi, Ala' M
Mirjalili, Seyedali
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
Abstract

Searching for the optimal subset of features is known as a challenging problem in feature selection process. To deal with the difficulties involved in this problem, a robust and reliable optimization algorithm is required. In this paper, Grasshopper Optimization Algorithm (GOA) is employed as a search strategy to design a wrapper-based feature selection method. The GOA is a recent population-based metaheuristic that mimics the swarming behaviors of grasshoppers. In this work, an efficient optimizer based on the simultaneous use of the GOA, selection operators, and Evolutionary Population Dynamics (EPD) is proposed in the form of four different strategies to mitigate the immature convergence and stagnation drawbacks of the conventional GOA. In the first two approaches, one of the top three agents and a randomly generated one are selected to reposition a solution from the worst half of the population. In the third and fourth approaches, to give a chance to the low fitness solutions in reforming the population, Roulette Wheel Selection (RWS) and Tournament Selection (TS) are utilized to select the guiding agent from the first half. The proposed GOA_EPD approaches are employed to tackle various feature selection tasks. The proposed approaches are benchmarked on 22 UCI datasets. The comprehensive results and various comparisons reveal that the EPD has a remarkable impact on the efficacy of the GOA and using the selection mechanism enhanced the capability of the proposed approach to outperform other optimizers and find the best solutions with improved convergence trends. Furthermore, the comparative experiments demonstrate the superiority of the proposed approaches when compared to other similar methods in the literature.

Journal Title

Knowledge-Based Systems

Conference Title
Book Title
Edition
Volume

145

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Psychology

Artificial intelligence

Data management and data science

Machine learning

Persistent link to this record
Citation
Collections