Alpha-synuclein aggregates are excluded from calbindin-D28k-positive neurons in dementia with Lewy bodies and a unilateral rotenone mouse model
File version
Author(s)
Davis, Amelia
Meedeniya, Adrian CB
Pountney, Dean L
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
α-Synuclein (α-syn) aggregates (Lewy bodies) in Dementia with Lewy Bodies (DLB) may be associated with disturbed calcium homeostasis and oxidative stress. We investigated the interplay between α-syn aggregation, expression of the calbindin-D28k (CB) neuronal calcium-buffering protein and oxidative stress, combining immunofluorescence double labelling and Western analysis, and examining DLB and normal human cases and a unilateral oxidative stress lesion model of α-syn disease (rotenone mouse). DLB cases showed a greater proportion of CB + cells in affected brain regions compared to normal cases with Lewy bodies largely present in CB − neurons and virtually undetected in CB + neurons. The unilateral rotenone-lesioned mouse model showed a greater proportion of CB + cells and α-syn aggregates within the lesioned hemisphere than the control hemisphere, especially proximal to the lesion site, and α-syn inclusions occurred primarily in CB − cells and were almost completely absent in CB + cells. Consistent with the immunofluorescence data, Western analysis showed the total CB level was 25% higher in lesioned compared to control hemisphere in aged animals that are more sensitive to lesion and 20% higher in aged compared to young mice in lesioned hemisphere, but not significantly different between young and aged in the control hemisphere. Taken together, the findings show α-syn aggregation is excluded from CB + neurons, although the increased sensitivity of aged animals to lesion was not related to differential CB expression.
Journal Title
Molecular and Cellular Neuroscience
Conference Title
Book Title
Edition
Volume
77
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Neurosciences
Neurosciences not elsewhere classified
Psychology
Cognitive and computational psychology