MassARRAY and SABER Analyses of SNPs in Embryo DNA Reveal the Abscission of Self-Fertilised Progeny during Fruit Development of Macadamia (Macadamia integrifolia Maiden & Betche)

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
De Silva, Anushika L
Kämper, Wiebke
Ogbourne, Steven M
Nichols, Joel
Royle, Jack WL
Peters, Trent
Hawkes, David
Hosseini Bai, Shahla
Wallace, Helen M
Trueman, Stephen J
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
Abstract

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia ‘cultivar ‘816’ embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by ‘842’, ‘A4’, or ‘A203’ had 16–29% higher NIS mass and 24–44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by ‘A4’ or ‘A203’ also had 5% or 6% higher kernel recovery, worth approximately $US460–540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.

Journal Title

International Journal of Molecular Sciences

Conference Title
Book Title
Edition
Volume

25

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Item Access Status
Note
Access the data
Related item(s)
Subject

Agriculture, land and farm management

Biochemistry and cell biology

Microbiology

Medicinal and biomolecular chemistry

Persistent link to this record
Citation

De Silva, AL; Kämper, W; Ogbourne, SM; Nichols, J; Royle, JWL; Peters, T; Hawkes, D; Hosseini Bai, S; Wallace, HM; Trueman, SJ, MassARRAY and SABER Analyses of SNPs in Embryo DNA Reveal the Abscission of Self-Fertilised Progeny during Fruit Development of Macadamia (Macadamia integrifolia Maiden & Betche), International Journal of Molecular Sciences, 2024, 25 (12), pp. 6419

Collections