Abiotic stress responses in plants: Present and future
File version
Author(s)
Patade, Vikas
Penna, Suprasanna
Ford, Rebecca
Pang, Edwin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Ahmad, P
Prasad, MNV
Date
Size
File type(s)
Location
License
Abstract
Drought, cold, high-salinity and heat are major abiotic stresses that severely reduce the yield of food crops worldwide. Traditional plant breeding approaches to improve abiotic stress tolerance of crops had limited success due to multigenic nature of stress tolerance. In the last decade, molecular techniques have been used to understand the mechanisms by which plants perceive environmental signals and further their transmission to cellular machinery to activate adaptive responses. This knowledge is critical for the development of rational breeding and transgenic strategies to impart stress tolerance in crops. Studies on physiological and molecular mechanisms of abiotic stress tolerance have led to characterisation of a number of genes associated with stress adaptation. Techniques like microarrays have proven to be invaluable in generating a list of stress-related genes. Some of these genes are specific for a particular stress while others are shared between various stresses. Interestingly, a number of genes are shared in abiotic and biotic stress responses. This highlights the complexity of stress response and adaptation in plants. There is a whole cascade of genes involved in abiotic stress tolerance; starting from stress perception to transcriptional activation of downstream genes leading to stress adaptation and tolerance. A number of these genes have been discovered but we still do not have the complete list with all interactions. There is also significant number of genes with unknown functions found to be regulated by abiotic stresses. Understanding the function of these genes and their interaction with other known genes to effect stress adaptation is required.
The recent discovery that microRNAs regulate gene expression adds another layer of complexity to our understanding of abiotic stress tolerance. Significant amount of work will be needed to identify microRNAs associated with abiotic stress response, and understand their interaction with each other and their mechanism of regulating abiotic stress response. The promising side is the development of next-generation sequencing techniques that has allowed deep sequencing of mRNAs and microRNAs associated with abiotic stress response. A complete understanding on physiological and molecular mechanisms especially signalling cascades in response to abiotic stresses in tolerant plants will help to manipulate susceptible crop plants and increase agricultural productivity in the near future.
Journal Title
Conference Title
Book Title
Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Other agricultural, veterinary and food sciences not elsewhere classified