Comparison of diversity and zinc solubilizing efficiency of rhizobacteria obtained from solanaceous crops under polyhouse and open field conditions

No Thumbnail Available
File version
Author(s)
Rani, N
Kaur, G
Kaur, S
Mutreja, V
Upadhyay, SK
Tripathi, M
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2023
Size
File type(s)
Location
License
Abstract

Zinc-solubilizing bacteria (Zn-SB) play a crucial role in regulating soil fertility and plant health by maintaining Zn availability in the rhizosphere. It is uncertain how the Zn-SB population fluctuates across various cultivation systems since varied land-use patterns for agricultural aims may affect microbial activity and plant development effectiveness. The current study aims to examine the Zn-SB potential of various farming systems using Solanum lycopersicum, Solanum melongena, and Capsicum annuum grown in polyhouse soil (PS) and open fields (OF). Only twenty rhizobacterial isolates from PS and two isolates from OF out of 80 showed a strong ability to solubilize Zn, which was evaluated using Atomic Absorption Spectroscopy. Bacterial strain-PS4 solubilized 253.06 ppm of ZnO and produced a high quantity of lactic acid (168.62 g/ml) and acetic acid (470.5 g/ml), whereas bacterial strain OF1 solubilized 16.02 ppm of ZnO by releasing glycolic acid (42.89 g/ml), lactic acid (22.30 g/ml), formic acid (106.03 g/ml), and acetic acid (48.5 µg/ml). Further, in vitro studies demonstrated higher production of auxin, gibberellic acid and siderophore by PS1 as compared to OF1 strain. A large diversity of Zn-SB in the soil was indicated by biochemical analysis, which revealed that isolates belonged to the families Enterobacteriaceae, Bacillaceae, Burkholderiaceae, Streptococcaceae, Paenibacillaceae, Micrococcaceae, Morganellaceae, and Dietziaceae. The isolates PS4 and OF1 were identified as Bacillus cereus and Enterobacter hormaechei, respectively, using 16S rRNA sequencing. The findings show that soil from polyhouses has a greater diversity of Zn-solubilization rhizobacteria than soil from open areas. The findings suggested a potential land-use method for enhancing crop yields by employing microorganisms and polyhouse technology, which could be useful in the future study.

Journal Title

Biotechnology and Genetic Engineering Reviews

Conference Title
Book Title
Edition
Volume

39

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation

Rani, N; Kaur, G; Kaur, S; Mutreja, V; Upadhyay, SK; Tripathi, M, Comparison of diversity and zinc solubilizing efficiency of rhizobacteria obtained from solanaceous crops under polyhouse and open field conditions, Biotechnology and Genetic Engineering Reviews, 2023, 39 (2), pp. 527-548

Collections