Local search for Boolean Satisfiability with configuration checking and subscore
File version
Author(s)
Su, Kaile
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
473848 bytes
File type(s)
application/pdf
Location
License
Abstract
This paper presents and analyzes two new efficient local search strategies for the Boolean Satisfiability (SAT) problem. We start by proposing a local search strategy called configuration checking (CC) for SAT. The CC strategy results in a simple local search algorithm for SAT called Swcc, which shows promising experimental results on random 3-SAT instances, and outperforms TNM, the winner of SAT Competition 2009. However, the CC strategy for SAT is still in a nascent stage, and Swcc cannot yet compete with Sparrow2011, which won SAT Competition 2011 just after Swcc had been designed. The CC strategy seems too strict in that it forbids flipping those variables even with great scores, if they do not satisfy the CC criterion. We improve the CC strategy by adopting an aspiration mechanism, and get a new variable selection heuristic called configuration checking with aspiration (CCA). The CCA heuristic leads to an improved algorithm called Swcca, which exhibits state-of-the-art performance on random 3-SAT instances and crafted ones. The third contribution concerns improving local search algorithms for random k-SAT instances with k>3k>3. Although the SAT community has made great achievements in solving random 3-SAT instances, the progress lags far behind on random k-SAT instances with k>3k>3. This work proposes a new variable property called subscore, which is utilized to break ties in the CCA heuristic when candidate variables for flipping have the same score. The resulting algorithm CCAsubscore is very efficient for solving random k-SAT instances with k>3k>3, and significantly outperforms other state-of-the-art ones. Combining Swcca and CCAsubscore, we obtain a local search SAT solver called CCASat, which was ranked first in the random track of SAT Challenge 2012. Additionally, we perform theoretical analyses on the CC strategy and the subscore property, and show interesting results on these two heuristics. Particularly, our analysis indicates that the CC strategy is more effective for k-SAT with smaller k, while the subscore notion is not suitable for solving random 3-SAT.
Journal Title
Artificial Intelligence
Conference Title
Book Title
Edition
Volume
204
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2013 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence not elsewhere classified
Theory of computation
Cognitive and computational psychology