Isolation and Structure-Activity of μ-Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels

No Thumbnail Available
File version
Author(s)
Lewis, Richard J
Schroeder, Christina I
Ekberg, Jenny
Nielsen, Katherine J
Loughnan, Marion
Thomas, Linda
Adams, Denise A
Drinkwater, Roger
Adams, David J
Alewood, Paul F
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2007
Size
File type(s)
Location
License
Abstract

μ-Conotoxins are three-loop peptides produced by cone snails to inhibit voltage-gated sodium channels during prey capture. Using polymerase chain reaction techniques, we identified a gene sequence from the venom duct of Conus tulipa encoding a new μ-conotoxin-TIIIA (TIIIA). A 125I-TIIIA binding assay was established to isolate native TIIIA from the crude venom of Conus striatus. The isolated peptide had three post-translational modifications, including two hydroxyproline residues and C-terminal amidation, and <35% homology to other μ-conotoxins. TIIIA potently displaced [3H]saxitoxin and 125I-TIIIA from rat brain (Nav1.2) and skeletal muscle (Nav1.4) membranes. Alanine and glutamine scans of TIIIA revealed several residues, including Arg14, that were critical for high-affinity binding to tetrodotoxin (TTX)-sensitive Na+ channels. We were surprised to find that [E15A]TIIIA had a 10-fold higher affinity than TIIIA for TTX-sensitive sodium channels (IC50, 15 vs. 148 pM at rat brain membrane). TIIIA was selective for Nav1.2 and -1.4 over Nav1.3, -1.5, -1.7, and -1.8 expressed in Xenopus laevis oocytes and had no effect on rat dorsal root ganglion neuron Na+ current. 1H NMR studies revealed that TIIIA adopted a single conformation in solution that was similar to the major conformation described previously for μ-conotoxin PIIIA. TIIIA and analogs provide new biochemical probes as well as insights into the structure-activity of μ-conotoxins.

Journal Title

Molecular Pharmacology

Conference Title
Book Title
Edition
Volume

71

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biochemistry and cell biology

Neurosciences

Pharmacology and pharmaceutical sciences

Persistent link to this record
Citation
Collections