About SIC POVMs and discrete Wigner distributions
File version
Author(s)
Corbett, John
Durt, Thomas
Gross, David
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
A set of d2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure describedbefore by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries.
Journal Title
Journal of Optics B: Quantum and semiclassical optics
Conference Title
Book Title
Edition
Volume
7
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Quantum Information, Computation and Communication