ANA: Ant Nesting Algorithm for Optimizing Real-World Problems

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Hama Rashid, Deeam Najmadeen
Rashid, Tarik A
Mirjalili, Seyedali
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
Abstract

In this paper, a novel swarm intelligent algorithm is proposed called ant nesting algorithm (ANA). The algorithm is inspired by Leptothorax ants and mimics the behavior of ants searching for positions to deposit grains while building a new nest. Although the algorithm is inspired by the swarming behavior of ants, it does not have any algorithmic similarity with the ant colony optimization (ACO) algorithm. It is worth mentioning that ANA is considered a continuous algorithm that updates the search agent position by adding the rate of change (e.g., step or velocity). ANA computes the rate of change differently as it uses previous, current solutions, fitness values during the optimization process to generate weights by utilizing the Pythagorean theorem. These weights drive the search agents during the exploration and exploitation phases. The ANA algorithm is benchmarked on 26 well-known test functions, and the results are verified by a comparative study with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly algorithm (DA), five modified versions of PSO, whale optimization algorithm (WOA), salp swarm algorithm (SSA), and fitness dependent optimizer (FDO). ANA outperformances these prominent metaheuristic algorithms on several test cases and provides quite competitive results. Finally, the algorithm is employed for optimizing two well-known real-world engineering problems: antenna array design and frequency-modulated synthesis. The results on the engineering case studies demonstrate the proposed algorithm’s capability in optimizing real-world problems.

Journal Title

Mathematics

Conference Title
Book Title
Edition
Volume

9

Issue

23

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Data structures and algorithms

Mathematical sciences

Persistent link to this record
Citation

Hama Rashid, DN; Rashid, TA; Mirjalili, S, ANA: Ant Nesting Algorithm for Optimizing Real-World Problems, Mathematics, 9 (23), pp. 3111

Collections