Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities
File version
Author(s)
He, Xiao
Hou, Junjun
Li, Lianshan
Tang, Zhiyong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Membrane technology is one of the most promising technologies for separation and purification that is routinely and commercially employed in aqueous solutions. In comparison, its applications in organic solvents are severely underdeveloped mainly due to the poor stability of traditional polymer membranes in organic solvents. The emerging materials such as crosslinked polymers, covalent organic frameworks, metal–organic frameworks, conjugated microporous polymers, carbon molecular sieves, and graphene provide the solutions to address this problem. The membranes constructed with these novel materials show outstanding separation performance in regard to both high selectivity and solvent permeability, greatly pushing forward utilization of membrane technology in organic media. Here, an overview of the most important organic mixtures that need to be separated, the major separation processes adopted nowadays in organic solvents, and the recent progress in new developed membranes is provided.
Journal Title
Advanced Materials
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Access the data
Related item(s)
Subject
Physical sciences
Condensed matter physics
Chemical sciences
Engineering