Role of modulation magnitude and phase spectrum towards speech intelligibility
File version
Author(s)
Schwerin, Belinda
Wojcicki, Kamil
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
In this paper our aim is to investigate the properties of the modulation domain and more specifically, to evaluate the relative contributions of the modulation magnitude and phase spectra towards speech intelligibility. For this purpose, we extend the traditional (acoustic domain) analysis-modification-synthesis framework to include modulation domain processing. We use this framework to construct stimuli that retain only selected spectral components, for the purpose of objective and subjective intelligibility tests. We conduct three experiments. In the first, we investigate the relative contributions to intelligibility of the modulation magnitude, modulation phase, and acoustic phase spectra. In the second experiment, the effect of modulation frame duration on intelligibility for processing of the modulation magnitude spectrum is investigated. In the third experiment, the effect of modulation frame duration on intelligibility for processing of the modulation phase spectrum is investigated. Results of these experiments show that both the modulation magnitude and phase spectra are important for speech intelligibility, and that significant improvement is gained by the inclusion of acoustic phase information. They also show that smaller modulation frame durations improve intelligibility when processing the modulation magnitude spectrum, while longer frame durations improve intelligibility when processing the modulation phase spectrum.
Journal Title
Speech Communication
Conference Title
Book Title
Edition
Volume
53
Issue
3
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence not elsewhere classified
Cognitive and computational psychology
Linguistics
Communications engineering
Artificial intelligence