Efficient forward modelling using the self-consistent impedance method for electromagnetic surface impedance

No Thumbnail Available
File version
Author(s)
Espinosa, Hugo G
Thiel, David V
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

The two-dimensional self-consistent impedance method is used to calculate the electromagnetic surface impedance above subsurface structures at very low frequencies. The method was derived from Faraday's and Ampere's Laws and results in a linear matrix equation where the right hand side of the equation corresponds to the source field introduced into the model as a fixed magnetic value. An air layer above the earth's surface is included to allow the scattered magnetic field to be calculated at the surface. The source field is applied above the earth's surface as a Dirichlet boundary condition, and a Neumann boundary condition is applied to all other boundaries in the solution space. The left hand side of the linear equation corresponds to the impedance matrix determined by discretising the solution space into two-dimensional rectangular pixels or cells bounded by lumped impedance elements, with values determined by the electromagnetic properties of the local media and the size of the pixel in the model. The resulting sparse matrix offers the flexibility of cells of any shape or size. Due to the large matrix dimensions, an iterative solver with a preconditioning technique was used to improve the speed, size and convergence of the solution. The efficient forward modelling has been applied to the analysis of a coal seam with various structural anomalies and line of oxidation along a line defined by 500 m with 0.5 m resolution. This improved technique allows in-field inverse modelling of surface impedance data. This paper reports several likely coal-seam scenarios relevant to surface mining operations.

Journal Title

Exploration Geophysics

Conference Title
Book Title
Edition
Volume

45

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Geophysics

Electrical and electromagnetic methods in geophysics

Physical geography and environmental geoscience

Geomatic engineering

Persistent link to this record
Citation
Collections