Effects of endurance training on tissue glutathione homeostasis and lipid peroxidation in streptozotocin-induced diabetic rats.
File version
Author(s)
Laaksonen, DE
Atalay, M
Vider, L
Hanninen, O
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The aims of our study were to assess whether endurance training strengthens glutathione-dependent antioxidant defenses and decreases oxidative stress in experimental diabetes. Streptozotocin-induced diabetic rats were divided into trained and untrained groups, which were further divided into resting and acute exercise groups. Endurance training consisted of treadmill running for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted until exhaustion. Eight weeks' treadmill training increased the endurance, favorably decreased lipid peroxidation as measured by thiobarbituric acid reactive substances but not conjugated dienes levels in kidney and vastus lateralis muscle and upregulated glutathione peroxidase in red gastrocnemius muscle. However, it adversely decreased total glutathione level and glutathione peroxidase activity in kidney. Acute exhaustive exercise up-regulated glutathione peroxidase activity in liver. Endurance training did not prevent the increase in thiobarbituric acid reactive substances level in liver due to acute exhaustive exercise. Activities of glutathione disulfide reductase and glutathione S-transferase were not affected. Even though endurance training appeared to upregulate glutathione dependent antioxidant defense in skeletal muscle and to decrease lipid peroxidation in kidney and vastus lateralis muscle as measured by TBARS, our results suggests that beneficial effects of 8 weeks of endurance training are limited in this rat model of uncontrolled diabetes mellitus.
Journal Title
Scandinavian Journal of Medicine & Science in Sports
Conference Title
Book Title
Edition
Volume
12
Issue
3
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Sports science and exercise
Sports medicine
Medical physiology
Clinical sciences