Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo

Thumbnail Image
File version

Version of Record (VoR)

Landgraf, Marietta
Lahr, Christoph A
Sanchez-Herrero, Alvaro
Meinert, Christoph
Shokoohmand, Ali
Pollock, Pamela M
Hutmacher, Dietmar W
Shafiee, Abbas
McGovern, Jacqui A
Griffith University Author(s)
Primary Supervisor
Other Supervisors
File type(s)

Advanced prostate cancer (PCa) is known for its high prevalence to metastasize to bone, at which point it is considered incurable. Despite significant effort, there is no animal model capable of recapitulating the complexity of PCa bone metastasis. The humanized mouse model for PCa bone metastasis used in this study aims to provide a platform for the assessment of new drugs by recapitulating the human–human cell interactions relevant for disease development and progression. The humanized tissue-engineered bone construct (hTEBC) was created within NOD-scid IL2rgnull (NSG) mice and was used for the study of experimental PC3-Luc bone metastases. It was confirmed that PC3-Luc cells preferentially grew in the hTEBC compared with murine bone. The translational potential of the humanized mouse model for PCa bone metastasis was evaluated with two clinically approved osteoprotective therapies, the non-species-specific bisphosphonate zoledronic acid (ZA) or the human-specific antibody Denosumab, both targeting Receptor Activator of Nuclear Factor Kappa-Β Ligand. ZA, but not Denosumab, significantly decreased metastases in hTEBCs, but not murine femora. These results highlight the importance of humanized models for the preclinical research on PCa bone metastasis and indicate the potential of the bioengineered mouse model to closely mimic the metastatic cascade of PCa cells to human bone. Eventually, it will enable the development of new effective antimetastatic treatments.

Journal Title

Bone Research

Conference Title
Book Title




Thesis Type
Degree Program
Publisher link
Patent number
Grant identifier(s)
Rights Statement
Rights Statement

© Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Item Access Status
Access the data
Related item(s)

Clinical sciences

Science & Technology

Life Sciences & Biomedicine

Cell & Tissue Engineering

Cell Biology


Persistent link to this record

Landgraf, M; Lahr, CA; Sanchez-Herrero, A; Meinert, C; Shokoohmand, A; Pollock, PM; Hutmacher, DW; Shafiee, A; McGovern, JA, Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo, Bone Research, 2019, 7 (1)