Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction

No Thumbnail Available
File version
Author(s)
Zhuang, Linzhou
Ge, Lei
Yang, Yisu
Li, Mengran
Jia, Yi
Yao, Xiangdong
Zhu, Zhonghua
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low-cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron-cobalt oxide nanosheets (FexCoy-ONSs) with a large specific surface area (up to 261.1 m2 g−1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1-ONS measured at an overpotential of 350 mV reaches up to 54.9 A g−1, while its Tafel slope is 36.8 mV dec−1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1-ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1-ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH− ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.

Journal Title

Advanced Materials

Conference Title
Book Title
Edition
Volume

29

Issue

17

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Chemical sciences

Engineering

Materials engineering not elsewhere classified

Persistent link to this record
Citation
Collections