Programmable high-dimensional Hamiltonian in a photonic waveguide array

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Yang, Yang
Chapman, Robert J
Haylock, Ben
Lenzini, Francesco
Joglekar, Yogesh N
Lobino, Mirko
Peruzzo, Alberto
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
Abstract

Waveguide lattices offer a compact and stable platform for a range of applications, including quantum walks, condensed matter system simulation, and classical and quantum information processing. However, to date, waveguide lattice devices have been static and designed for specific applications. We present a programmable waveguide array in which the Hamiltonian terms can be individually electro-optically tuned to implement various Hamiltonian continuous-time evolutions on a single device. We used a single array with 11 waveguides in lithium niobate, controlled via 22 electrodes, to perform a range of experiments that realized the Su-Schriffer-Heeger model, the Aubrey-Andre model, and Anderson localization, which is equivalent to over 2500 static devices. Our architecture’s micron-scale local electric fields overcome the cross-talk limitations of thermo-optic phase shifters in other platforms such as silicon, silicon-nitride, and silica. Electro-optic control allows for ultra-fast and more precise reconfigurability with lower power consumption, and with quantum input states, our platform can enable the study of multiple condensed matter quantum dynamics with a single device.

Journal Title

Nature Communications

Conference Title
Book Title
Edition
Volume

15

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation

Yang, Y; Chapman, RJ; Haylock, B; Lenzini, F; Joglekar, YN; Lobino, M; Peruzzo, A, Programmable high-dimensional Hamiltonian in a photonic waveguide array, Nature Communications, 2024, 15, pp. 50

Collections