Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Raninga, Prahlad
Lee, Andy
Sinha, Debottam
Dong, Lan-feng
Datta, Keshava
Lu, Xue
Kalita-de Croft, Priyakshi
Dutt, Mriga
Hill, Michelle M
Pouliot, Normand M
Gowda, Harsha
Kalimutho, Murugan
Neuzil, Jiri
Khanna, Kum Kum
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
Abstract

Purpose: Lacking effective targeted therapies, triple-negative breast cancer (TNBCs) is highly aggressive and metastatic disease, and remains clinically challenging breast cancer subtype to treat. Despite the survival dependency on the proteasome pathway genes, FDA-approved proteasome inhibitors induced minimal clinical response in breast cancer patients due to weak proteasome inhibition. Hence, developing effective targeted therapy using potent proteasome inhibitor is required. Methods: We evaluated anti-cancer activity of a potent proteasome inhibitor, marizomib, in vitro using breast cancer lines and in vivo using 4T1.2 murine syngeneic model, MDA-MB-231 xenografts, and patient-derived tumor xenografts. Global proteome profiling, western blots, and RT-qPCR were used to investigate the mechanism of action for marizomib. Effect of marizomib on lung and brain metastasis was evaluated using syngeneic 4T1BR4 murine TNBC model in vivo. Results: We show that marizomib inhibits multiple proteasome catalytic activities and induces a better anti-tumor response in TNBC cell lines and patient-derived xenografts alone and in combination with the standard-of-care chemotherapy. Mechanistically, we show that marizomib is a dual inhibitor of proteasome and oxidative phosphorylation (OXPHOS) in TNBCs. Marizomib reduces lung and brain metastases by reducing the number of circulating tumor cells and the expression of genes involved in the epithelial-to-mesenchymal transition. We demonstrate that marizomib-induced OXPHOS inhibition upregulates glycolysis to meet the energetic demands of TNBC cells and combined inhibition of glycolysis with marizomib leads to a synergistic anti-cancer activity. Conclusions: Our data provide a strong rationale for a clinical evaluation of marizomib in primary and metastatic TNBC patients.

Journal Title

Theranostics

Conference Title
Book Title
Edition
Volume

10

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Item Access Status
Note
Access the data
Related item(s)
Subject

Oncology and carcinogenesis

Science & Technology

Life Sciences & Biomedicine

Medicine, Research & Experimental

Research & Experimental Medicine

Marizomib

Persistent link to this record
Citation

Raninga, P; Lee, A; Sinha, D; Dong, L-F; Datta, K; Lu, X; Kalita-de Croft, P; Dutt, M; Hill, MM; Pouliot, NM; Gowda, H; Kalimutho, M; Neuzil, J; Khanna, KK, Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition, Theranostics, 2020, 10 (12), pp. 5259-5275

Collections