Measurements on the reality of the wavefunction
File version
Accepted Manuscript (AM)
Author(s)
Duffus, B
Branciard, C
Cavalcanti, EG
White, AG
Fedrizzi, A
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality.
Journal Title
Nature Physics
Conference Title
Book Title
Edition
Volume
11
Issue
3
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2015 Nature Publishing Group. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Quantum information, computation and communication
Foundations of quantum mechanics