Benthic metabolism as an indicator of stream ecosystem health
File version
Author(s)
Clapcott, Joanne E
Udy, James W
Bunn, Stuart E
Harch, Bronwyn D
Smith, Michael J
Davies, Peter M
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
233211 bytes
65367 bytes
File type(s)
application/pdf
text/plain
Location
License
Abstract
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.
Journal Title
Hydrobiologia
Conference Title
Book Title
Edition
Volume
572
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2006 Springer. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
Item Access Status
Note
Access the data
Related item(s)
Subject
Earth sciences
Environmental sciences
Biological sciences