Predation, but not herbivory, declines with elevation in a tropical rainforest
File version
Version of Record (VoR)
Author(s)
Nakamura, A
Ashton, LA
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Naturally, insect herbivore populations are controlled by their plant hosts and predators. These ‘bottom-up’ and ‘top-down’ controls influence leaf area lost to herbivory. Bottom-up control of herbivory may be driven by leaf nutrients and plant defences. Top-down control can be driven by abundance and species richness of natural enemies, host or prey specificity, and predation strategies (e.g., active searching or sit-and-wait ‘ambush’ predation). The relative importance of bottom-up and top-down controls is unresolved but likely to vary spatially and temporally and under different environmental conditions such as changing temperature. We surveyed leaf carbon and nitrogen, leaf area loss, and attacks on plasticine caterpillars across a tropical elevational gradient in Xishuangbanna, Yunnan Provence, China. We show that predatory foraging activity decreases with elevation and temperature, whereas leaf nutrients and leaf area loss from herbivory remains more or less constant. Predation patterns were driven by ants, which are thermophiles and therefore more active, abundant, and diverse at warmer, lower elevations. Leaf nutritional values are important in driving herbivory patterns as herbivory was stable across this gradient, but other factors such as mechanical defences and herbivore-induced plant volatiles demand further study. Elevational studies provide insight into how ecosystem function will shift under climate change. As increasing temperatures following climate change allows predatory groups like ants to exploit higher elevations, top-down control in high elevation habitats could increase, resulting in re-wiring of these ecologically sensitive communities. At the same time, top-down control at lower elevations may be at risk if critical thermal maxima for natural enemies are exceeded.
Journal Title
Tropical Ecology
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advance online version.
Access the data
Related item(s)
Subject
Persistent link to this record
Citation
Barlow, BEL; Nakamura, A; Ashton, LA, Predation, but not herbivory, declines with elevation in a tropical rainforest, Tropical Ecology, 2024