Catchment soils supply ammonium to the coastal zone - Flood impacts on nutrient flux in estuaries

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
O'Mara, Kaitlyn
Olley, Jon M
Fry, Brian
Burford, Michele
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
Abstract

Erosion of soil from catchments during floods can deliver large quantities of sediment to the coastal zone. The transformations and processes of nutrient release from catchment soils during flooding are not well understood. To test the hypothesis that catchment soils supply nutrients to the coastal zone, we examined nutrient release and transformation following wetting of soils formed from three distinct rock types (basalt, granite and sandstone) with fresh and marine water. The soil samples were collected from eroding areas of a subtropical river catchment. We simulated runoff, transport and deposition by tumbling the fine fraction of the soils in freshwater for three days and settling in seawater for four weeks. We also collected and incubated cores from an adjacent coastal bay and added a layer of catchment soil to simulate deposition of new sediment following flood plume settling. Dissolved nutrients were measured in both simulations. Basalt soils were relatively nutrient rich and released substantial quantities of organic and inorganic dissolved nutrients, particularly phosphate. However when soils were added to estuarine sediment cores and incubated, there was a net influx of phosphate from the overlying water. All soils continually released ammonium in both experiments, indicating that catchment soils may be an important source of ammonium to fuel productivity within the coastal zone. This study provides new insights into increased nitrogen availability in a nitrogen-depauperate coastal zone and identifies catchment geology as an important influence in coastal productivity through delivery of soil nitrogen to downstream estuaries.

Journal Title

Science of the Total Environment

Conference Title
Book Title
Edition
Volume

654

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Environmental sciences

Persistent link to this record
Citation
Collections