Ensemble Learning Techniques and Applications in Pattern Classification

Loading...
Thumbnail Image
File version
Primary Supervisor

Liew, Alan

Other Supervisors

Jo, Jun Hyung

Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

It is widely known that the best classifier for a given problem is often problem dependent and there is no one classification algorithm that is the best for all classification tasks. A natural question that arise is: can we combine multiple classification algorithms to achieve higher classification accuracy than a single one? That is the idea behind a class of methods called ensemble method. Ensemble method is defined as the combination of several classifiers with the aim of achieving lower classification error rate than using a single classifier. Ensemble methods have been applying to various applications ranging from computer aided medical diagnosis, computer vision, software engineering, to information retrieval. In this study, we focus on heterogeneous ensemble methods in which a fixed set of diverse learning algorithms are learned on the same training set to generate the different classifiers and the class prediction is then made based on the output of these classifiers (called Level1 data or meta-data). The research on heterogeneous ensemble methods is mainly focused on two aspects: (i) to propose efficient classifiers combining methods on meta-data to achieve high accuracy, and (ii) to optimize the ensemble by performing feature and classifier selection. Although various approaches related to heterogeneous ensemble methods have been proposed, some research gaps still exist First, in ensemble learning, the meta-data of an observation reflects the agreement and disagreement between the different base classifiers.

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (PhD Doctorate)

Degree Program

Doctor of Philosophy (PhD)

School

School of Information and Communication Technology

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status
Note
Access the data
Related item(s)
Subject

Ensemble training

Pattern classification

Combine multiple classification algorithms

Heterogeneous ensemble methods

Persistent link to this record
Citation