Alginate/r-GO assisted synthesis of ultrathin LiFePO4 nanosheets with oriented (0 1 0) facet and ultralow antisite defect
File version
Accepted Manuscript (AM)
Author(s)
Chang, Guojing
Chen, Shuai
Liu, Tongchao
Xia, Yanzhi
Chen, Chengmeng
Yang, Dongjiang
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Li4Ti5O12/LiFePO4 (LTO/LFP) is a promising lithium ion batteries (LIBs) configuration due to its high safety and circularity. However, three factors result in the low capacity at high current density and low energy density in LTO/LFP: (i) low intrinsic electronic and ionic conductivities; (ii) long one-dimensional (1D) pathway along the [0 1 0] channel; (iii) Fe-Li antisite defect in LFP. It is still a great challenge to address the three problems simultaneously in LTO/LFP cell. Herein, we synthesized LFP ultrathin nanosheets (∼5–10 nm) with oriented (0 1 0) facet and ultralow Fe-Li antisite defects with the assistance of alginate and 2D reduced graphene oxide (LFP NS/r-GO). The novel “egg-box” structure in alginate is the key to restrain the Fe-Li antisites. The sandwich structure, which is formed by long range Van der Waals forces and hydrogen bond between the Li-Fe-P-alginate molecules and 2D r-GO nanosheets, results in the formation of ultrathin LFP NSs with oriented (0 1 0) facet. The density functional theory (DFT) calculations reveal that the tacking of LFP ultrathin NS with oriented (0 1 0) facet on the r-GO has a strong ability of Li+ ion deintercalation. When evaluating LFP NS/r-GO as cathode materials for LIBs, the sample displays outstanding rate capacity of 98.6 mA h g−1 at 100 C and its full cell with LTO anode achieves remarkable specific energy (265 W h kg−1) and power density (6.81 kW kg−1).
Journal Title
Chemical Engineering Journal
Conference Title
Book Title
Edition
Volume
351
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Chemical engineering
Civil engineering
Environmental engineering
Environmental engineering not elsewhere classified