Association between expression of the H histo-blood group antigen, alpha1,2fucosyltransferases polymorphism of wild rabbits, and sensitivity to rabbit hemorrhagic disease virus

No Thumbnail Available
File version
Author(s)
Guillon, Patrice
Ruvoen-Clouet, Nathalie
Le Moullac-Vaidye, Beatrice
Marchandeau, Stephane
Le Pendu, Jacques
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2009
Size
File type(s)
Location
License
Abstract

RHDV (rabbit hemorrhagic disease virus) is a highly virulent calicivirus that has become a major cause of mortality in wild rabbit populations (Oryctolagus cuniculus). It binds to the histo-blood group antigen (HBGA) H type 2 which requires an alpha1,2fucosyltransferase for its synthesis. In rabbit, three alpha1,2fucosyltransferases genes are known, Fut1, Fut2, and Sec1. Nonfunctional alleles at any of these loci could potentially confer resistance to RHDV, similar to human FUT2 alleles that determine the nonsecretor phenotype and resistance to infection by various NoV strains. In this study, we looked for the presence of H type 2 on buccal epithelial cells of wild rabbits from two geographic areas under RHDV pressure and from one RHDV-free area. Some animals with diminished H type 2 expression were found in the three populations (nonsecretor-like phenotype). Their frequency markedly increased according to the RHDV impact, suggesting that outbreaks selected survivors with low expression of the virus ligand. Polymorphisms of the Fut1, Fut2, and Sec1 coding regions were determined among animals that either died or survived outbreaks. The Fut2 and Sec1 genes presented a high polymorphism and the frequency of one Sec1 allele was significantly elevated, over 6-fold, among survivors. Sec1 enzyme variants showed either moderate, low, or undetectable catalytic activity, whereas all variant Fut2 enzymes showed strong catalytic activity. This functional analysis of the enzymes encoded by each Fut2 and Sec1 allele suggests that the association between one Sec1 allele and survival might be explained by a deficit of alpha1,2fucosyltransferase expression rather than by impaired catalytic activity.

Journal Title

Glycobiology

Conference Title
Book Title
Edition
Volume

19

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Biological sciences

Host-parasite interactions

Virology

Biomedical and clinical sciences

Innate immunity

Persistent link to this record
Citation
Collections