Wave-induced oscillatory response in a randomly heterogeneous porous seabed

No Thumbnail Available
File version
Author(s)
Zhang, LL
Cheng, Y
Li, JH
Zhou, XL
Jeng, DS
Peng, XY
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

The seabed response under wave loading is important for the stability of foundations of offshore structures. Unlike previous studies, the wave-induced seabed response in a spatially random porous seabed is investigated in this study. A stochastic finite element model which integrates random field simulation of spatially varied soil properties and finite element modeling of wave-induced seabed response is established. Spatial variability of soil shear modulus, soil permeability, and degree of saturation, are simulated using the covariance matrix decomposition method. The results indicate that the pore water pressure and stress distribution in the seabed are significantly affected by the spatial variability of the shear modulus. The mean of maximum oscillating pore pressure in a randomly heterogeneous seabed is greater than that in a homogenous seabed. The uncertainty of the maximum oscillating pore pressure first increases and then reduces with the correlation length. The effects of spatial variability of permeability and degree of saturation are less significant than that of shear modulus. The spatial variability of soil permeability increases the uncertainty of oscillating pore pressure in the seabed at shallow depths. The spatial variability of shear modulus and degree of saturation affects the uncertainty of oscillating pore pressure of the whole seabed.

Journal Title

Ocean Engineering

Conference Title
Book Title
Edition
Volume

111

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Oceanography

Civil engineering

Maritime engineering

Maritime engineering not elsewhere classified

Persistent link to this record
Citation
Collections