A Parallel and Distributed Quantum SAT Solver Based on Entanglement and Teleportation
File version
Version of Record (VoR)
Author(s)
Wang, TF
Chen, YR
Hou, Z
Sanán, D
Teo, YS
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Finkbeiner, B
Kovács, L
Date
Size
File type(s)
Location
Luxembourg City, Luxembourg
Abstract
Boolean satisfiability (SAT) solving is a fundamental problem in computer science. Finding efficient algorithms for SAT solving has broad implications in many areas of computer science and beyond. Quantum SAT solvers have been proposed in the literature based on Grover’s algorithm. Although existing quantum SAT solvers can consider all possible inputs at once, they evaluate each clause in the formula one by one sequentially, making the time complexity O(m), linear to the number of clauses m, per Grover iteration. In this work, we develop a parallel quantum SAT solver, which reduces the time complexity in each iteration to constant time O(1) by utilising extra entangled qubits. To further improve the scalability of our solution in case of extremely large problems, we develop a distributed version of the proposed parallel SAT solver based on quantum teleportation such that the total qubits required are shared and distributed among a set of quantum computers (nodes), and the quantum SAT solving is accomplished collaboratively by all the nodes. We prove the correctness of our approaches and evaluate them in simulations and real quantum computers.
Journal Title
Conference Title
Tools and Algorithms for the Construction and Analysis of Systems: 30th International Conference, TACAS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings, Part II
Book Title
Edition
Volume
14571
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2024. Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation
Lin, SW; Wang, TF; Chen, YR; Hou, Z; Sanán, D; Teo, YS, A Parallel and Distributed Quantum SAT Solver Based on Entanglement and Teleportation, Tools and Algorithms for the Construction and Analysis of Systems: 30th International Conference, TACAS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings, Part II, 2024, 14571, pp. 363-382