Inter-image outliers and their application to image classification
File version
Author(s)
Dimitrijev, Sima
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
4606894 bytes
File type(s)
application/pdf
Location
License
Abstract
Image variability that is impossible or difficult to restore by intra-image processing, such as the variability caused by occlusions, significantly reduces the performance of image-recognition methods. To address this issue, we propose that the pixels associated with large distances obtained by inter-image pixel-by-pixels comparisons should be considered as inter-image outliers and should be removed from the similarity calculation used for the image classification. When this method is combined with the template-matching method for image recognition, it leads to state-of-the-art recognition performance: 91% with AR database that includes occluded face images, 90% with PUT database that includes pose variations of face images and 100% with EYale B database that includes images with large illumination variation
Journal Title
Pattern Recognition
Conference Title
Book Title
Edition
Volume
43
Issue
12
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2010 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Information systems