Potential decoupling of trends in distribution area and population size of species with climate change

No Thumbnail Available
File version
Author(s)
Shoo, Lucas
E. Williams, Stephen
Hero, Jean-Marc
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2005
Size
File type(s)
Location
License
Abstract

Global climates are changing rapidly and biological responses are becoming increasingly apparent. Here, we use empirical abundance patterns across an altitudinal gradient and predicted altitudinal range shifts to estimate change in total population size relative to distribution area in response to climate warming. Adopting this approach we predict that, for nine out of 12 species of regionally endemic birds, total population size will decline more rapidly than distribution area with increasing temperature. Two species showed comparable loss and one species exhibited a slower decline in population size with change in distribution area. Population size change relative to distribution area was greatest for those species that occurred at highest density in the middle of the gradient. The disproportional loss in population size reported here suggests that extinction risk associated with climate change can be more severe than that expected from decline in distribution area alone. Therefore, if we are to make accurate predictions of the impacts of climate change on the conservation status of individual species, it is crucial that we consider the spatial patterns of abundance within the distribution and not just the overall range of the species.

Journal Title

Global Change Biology

Conference Title
Book Title
Edition
Volume

11

Issue

9

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Environmental sciences

Biological sciences

Persistent link to this record
Citation
Collections