Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis
File version
Author(s)
Dalen, H
Eaton, JW
Neuzil, J
Brunk, UT
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The mechanisms of mitochondrial alterations in aged post-mitotic cells, including formation of so-called 'giant' mitochondria, are poorly understood. To test whether these large mitochondria might appear due to imperfect autophagic mitochondrial turnover, we inhibited autophagocytosis in cultured neonatal rat cardiac myocytes with 3-methyladenine. This resulted in abnormal accumulation of mitochondria within myocytes, loss of contractility, and reduced survival time in culture. Unlike normal aging, which is associated with slow accumulation of predominantly large defective mitochondria, pharmacological inhibition of autophagy caused only moderate accumulation of large (senescent-like) mitochondria but dramatically enhanced the numbers of small mitochondria, probably reflecting their normally more rapid turnover. Furthermore, the 3-methyladenine-induced accumulation of large mitochondria was irreversible, while small mitochondria gradually decreased in number after withdrawal of the drug. We, therefore, tentatively conclude that large mitochondria selectively accumulate in aging post-mitotic cells because they are poorly autophagocytosed. Mitochondrial enlargement may result from impaired fission, a possibility supported by depressed DNA synthesis in large mitochondria. Nevertheless, enlarged mitochondria retained immunoreactivity for cytochrome c oxidase subunit 1, implying that mitochondrial genes remain active in defective mitochondria. Our findings suggest that imperfect autophagic recycling of these critical organelles may underlie the progressive mitochondrial damage, which characterizes aging post-mitotic cells.
Journal Title
Experimental Gerontology
Conference Title
Book Title
Edition
Volume
38
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2003 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links.
Item Access Status
Note
Access the data
Related item(s)
Subject
Biomedical and clinical sciences