Novel approaches in cancer management with circulating tumor cell clusters

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Rostami, Peyman
Kashaninejad, Navid
Moshksayan, Khashayar
Saidi, Mohammad Said
Firoozabadi, Bahar
Nam-Trung, Nguyen
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Tumor metastasis is responsible for the vast majority of cancer-associated morbidities and mortalities. Recent studies have disclosed the higher metastatic potential of circulating tumor cell (CTC) clusters than single CTCs. Despite long-term study on metastasis, the characterizations of its most potent cellular drivers, i.e., CTC clusters have only recently been investigated. The analysis of CTC clusters offers new intuitions into the mechanism of tumor metastasis and can lead to the development of cancer diagnosis and prognosis, drug screening, detection of gene mutations, and anti-metastatic therapeutics. In recent years, considerable attention has been dedicated to the development of efficient methods to separate CTC clusters from the patients’ blood, mainly through micro technologies based on biological and physical principles. In this review, we summarize recent developments in CTC clusters with a particular emphasis on passive separation methods that specifically have been developed for CTC clusters or have the potential for CTC cluster separation. Methods such as liquid biopsy are of paramount importance for commercialized healthcare settings. Furthermore, the role of CTC clusters in metastasis, their physical and biological characteristics, clinical applications and current challenges of this biomarker are thoroughly discussed. The current review can shed light on the development of more efficient CTC cluster separation method that will enhance the pivotal understanding of the metastatic process and may be practical in contriving new strategies to control and suppress cancer and metastasis.

Journal Title

Journal of Science: Advanced Materials and Devices

Conference Title
Book Title
Edition
Volume

4

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2019 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Oncology and carcinogenesis

Persistent link to this record
Citation
Collections