Involvement of NLRP3 inflammasome pathway in the protective mechanisms of ferulic acid and p-coumaric acid in LPS-induced sickness behavior and neuroinflammation in mice
File version
Version of Record (VoR)
Author(s)
Ranadive, Niraja
Nampoothiri, Madhavan
Arora, Devinder
Mudgal, Jayesh
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Ferulic acid (FA) and p-coumaric acid (PCA) are abundantly present in commonly consumed food and beverages. Being polyphenolic compounds, they have been explored for their antioxidant and anti-inflammatory properties. Based on our previous study, we selected these two compounds to further investigate their potential in lipopolysaccharide (LPS)-induced sickness behavior and the ensuing neuroinflammation by specifically focusing on the NLRP3 inflammasome pathway. Male Swiss albino mice were divided into nine groups (n = 6) consisting of Normal Control, LPS, fluoxetine (FLX), FA40, FA160, FA640, PCA40, PCA160, and PCA640 respectively. Each group received respective FA or PCA treatment except Normal Control and LPS, which received the vehicle, carboxymethylcellulose 0.25% w/v. All groups were challenged with LPS 1.5 mg/kg, intraperitoneally except the Normal Control group, which received saline. Behavioral assessments were performed between 1-2 h, and the whole brains were collected at 3 h post-LPS administration. LPS-induced sickness behavior was characterized by significantly reduced spontaneous activity and high immobility time. The expression of NLRP3, ASC, caspase-1 and IL-1β was significantly increased, along with the levels of brain IL-1β suggesting the assembly and activation of NLRP3 inflammasome pathway. Furthermore, the major cytokines involved in sickness behavior, IL-6 and TNF-α were also significantly elevated with the accompanied lipid peroxidation. The results of this study emphasize that within the employed dose ranges of both FA and PCA, both the compounds were effective at blocking the activation of the NLRP3 inflammasome pathway and thereby reducing the release of IL-1β and the sickness behavior symptoms. There was a prominent effect on cytokine levels and lipid peroxidation as well.
Journal Title
Naunyn-Schmiedeberg's Archives of Pharmacology
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Neurosciences
Pharmacology and pharmaceutical sciences
Cytokines
Ferulic acid
NLRP3 inflammasome
Neuroinflammation
Sickness behavior
Persistent link to this record
Citation
Kinra, M; Ranadive, N; Nampoothiri, M; Arora, D; Mudgal, J, Involvement of NLRP3 inflammasome pathway in the protective mechanisms of ferulic acid and p-coumaric acid in LPS-induced sickness behavior and neuroinflammation in mice, Naunyn-Schmiedeberg's Archives of Pharmacology, 2023