Data-dependent Hashing Based on p-Stable Distribution

Loading...
Thumbnail Image
File version
Author(s)
Bai, Xiao
Yang, Haichuan
Zhou, Jun
Ren, Peng
Cheng, Jian
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size

854195 bytes

File type(s)

application/pdf

Location
License
Abstract

The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property, we develop a projection method, which maps the original data to arbitrary dimensional vectors. Each projection vector is a linear combination of multiple random vectors subject to p-stable distribution, in which the weights for the linear combination are learned based on the training data. An orthogonal matrix is then learned data-dependently for minimizing the thresholding error in quantization. Combining the projection method and orthogonal matrix, we develop an unsupervised hashing scheme, which preserves the Euclidean distance. Compared with data-independent hashing methods, our method takes the data distribution into consideration and gives more accurate hashing results with compact hash codes. Different from many data-dependent hashing methods, our method accommodates multiple hash tables and is not restricted by the number of hash functions. To extend our method to a supervised scenario, we incorporate a supervised label propagation scheme into the proposed projection method. This results in a supervised hashing scheme, which preserves semantic similarity of data. Experimental results show that our methods have outperformed several state-of-the-art hashing approaches in both effectiveness and efficiency.

Journal Title

IEEE Transactions on Image Processing

Conference Title
Book Title
Edition
Volume

23

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Item Access Status
Note
Access the data
Related item(s)
Subject

Computer vision

Cognitive and computational psychology

Persistent link to this record
Citation
Collections