The extinction problem for three-dimensional inward solidification

No Thumbnail Available
File version
Author(s)
McCue, Scott
King, John R.
Riley, David S.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

Professor H.K. Kuiken

Date
2005
Size
File type(s)
Location
License
Abstract

The one-phase Stefan problem for the inward solidification of a three-dimensional body of liquid that is initially at its fusion temperature is considered. In particular, the shape and speed of the solid-melt interface is described at times just before complete freezing takes place, as is the temperature field in the vicinity of the extinction point. This is accomplished for general Stefan numbers by employing the Baiocchi transform. Other previous results for this problem are confirmed, for example the asymptotic analysis reveals the interface ultimately approaches an ellipsoid in shape, and furthermore, the accuracy of these results is improved. The results are arbitrary up to constants of integration that depend physically on both the Stefan number and the shape of the fixed boundary of the liquid region. In general it is not possible to determine this dependence analytically; however, the limiting case of large Stefan number provides an exception. For this limit a rather complete asymptotic picture is presented, and a recipe for the time it takes for complete freezing to occur is derived. The results presented here for fully three-dimensional domains complement and extend those given by McCue et al.[Proc. R. Soc. London A 459 (2003) 977], which are for two dimensions only, and for which a significantly different time dependence occurs.

Journal Title

Journal of Engineering Mathematics

Conference Title
Book Title
Edition
Volume

52

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Applied Mathematics

Numerical and Computational Mathematics

Mechanical Engineering

Persistent link to this record
Citation
Collections