Analysis of flat-band-voltage dependent breakdown voltage for 10 nm double gate MOSFET

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Jung, H
Dimitrijev, S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
Abstract

The existing modeling of avalanche dominated breakdown in double gate MOSFETs (DGMOSFETs) is not relevant for 10 nm gate lengths, because the avalanche mechanism does not occur when the channel length approaches the carrier scattering length. This paper focuses on the punch through mechanism to analyze the breakdown characteristics in 10 nm DGMOSFETs. The analysis is based on an analytical model for the thermionic-emission and tunneling currents, which is based on two-dimensional distributions of the electric potential, obtained from the Poisson equation, and the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling probability. The analysis shows that corresponding flat-band-voltage for fixed threshold voltage has a significant impact on the breakdown voltage. To investigate ambiguousness of number of dopants in channel, we compared breakdown voltages of high doping and undoped DGMOSFET and show undoped DGMOSFET is more realistic due to simple flat-band-voltage shift. Given that the flat-band-voltage is a process dependent parameter, the new model can be used to quantify the impact of process-parameter fluctuations on the breakdown voltage.

Journal Title

Journal of Information and Communication Convergence Engineering

Conference Title
Book Title
Edition
Volume

16

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Korea Institute of Information and Communication Engineering. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Communications engineering

Communications engineering not elsewhere classified

Persistent link to this record
Citation
Collections