What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis?
File version
Author(s)
Broadley, Simon A
Butzkueven, Helmut
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
566488 bytes
File type(s)
application/pdf
Location
Abstract
Multiple sclerosis is a potentially debilitating disease of the central nervous system. A concerted program of research by many centers around the world has consistently demonstrated the importance of the immune system in its pathogenesis. This knowledge has led to the formal testing of a number of therapeutic agents in both animal models and humans. These clinical trials have shed yet further light on the pathogenesis of MS through their sometimes unexpected effects and by their differential effects in terms of impact on relapses, progression of the disease, paraclinical parameters (MRI) and the adverse events that are experienced. Here we review the currently approved medications for the commonest form of multiple sclerosis (relapsing-remitting) and the emerging therapies for which preliminary results from phase II/III clinical trials are available. A detailed analysis of the molecular mechanisms responsible for the efficacy of these medications in multiple sclerosis indicates that blockade or modulation of both T- and B-cell activation and migration pathways in the periphery or CNS can lead to amelioration of the disease. It is hoped that further therapeutic trials will better delineate the pathogenesis of MS, ultimately leading to even better treatments with fewer adverse effects.
Journal Title
International Journal of Molecular Sciences
Conference Title
Book Title
Edition
Volume
13
Issue
10
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2012 by the authors; licensee MDPI, author. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Other chemical sciences
Genetics
Other biological sciences
Central nervous system