Novel performance metrics for robust multi-objective optimization algorithms
File version
Author(s)
Lewis, Andrew
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Performance metrics are essential for quantifying the performance of optimization algorithms in the field of evolutionary multi-objective optimization. Such metrics allow researchers to compare different algorithms quantitatively. In the field of robust multi-objective optimization, however, there is currently no performance metric despite its significant importance. This motivates our proposal of three novel specific metrics for measuring the convergence, coverage, and success rate of robust Pareto optimal solutions obtained by robust multi-objective algorithms. The proposed metrics are employed to quantitatively evaluate and compare Robust Multi-objective Particle Swarm Optimization (RMOPSO) and Robust Non-dominated Sorting Genetic Algorithm (RNSGA-II) on seven selected benchmark problems. The results show that the proposed metrics are effective in quantifying the performance of robust multi-objective algorithms in terms of convergence, coverage, and the ratio of the robust/non-robust Pareto optimal solutions obtained.
Journal Title
Swarm and Evolutionary Computation
Conference Title
Book Title
Edition
Volume
21
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Theory of computation
Artificial intelligence